Hydraulic Power Supply & Motors
Table of Contents

Introduction ... 1
 Overview.. 1
 How To Use This Module....................................... 1
 Learning Objectives... 2
 Text.. 2
 Charts and Illustrations ... 2
 Progress Checks.. 2
 Additional Resources.. 2

Hydraulic Systems... 3
 Learning Objectives... 3
 Component Identification and Function 3
 How Hydraulic Systems Work................................. 6
 Pressure and Flow Control..................................... 7
 Power Supply Sizing.. 8
 Progress Check... 9

Hydraulic Motors.. 14
 Learning Objectives.. 14
 Component Identification and Function 15
 Progress Check.. 19
 How Differential Hydraulic Motors Work............... 22
 Progress Check.. 26

Hydraulic Systems:
Advantages, Limitations, and Uses........... 29
 Learning Objectives.. 29
 Advantages and Limitations...................... 29
 Typical Applications.. 32
 Progress Check.. 33

Graco Inc. is registered to I.S. EN ISO 9001.

Graco, Inc.
P.O. Box 1441
Minneapolis, MN 55440-1441

©1996 Graco Inc. Form No. 321-046 1/96 Printed in U.S.A.
Introduction

Welcome to *Hydraulic Power Supply & Motors*, a learning module in Graco’s concept and theory sales training series. Your understanding of the information in this module provides the basis for further study on specific Graco products. Your ability to successfully promote and sell Graco products depends in part on how well you learn the basics and then apply this knowledge to addressing your customers’ needs.

While this curriculum best fits the requirements of Graco and distributor sales people, it will also benefit anyone whose job function depends on knowledge of Graco’s products.

Overview

Graco designs and manufactures a complete line of hydraulic-powered fluid handling systems and accessories. To recognize appropriate marketing opportunities and to answer customer service questions satisfactorily, you need to know the basics about hydraulics. This module provides that fundamental information. It focuses on the hydraulic power supply and differential hydraulic motors, identifying and explaining the functions of their main components and describing their operating cycles. In addition, it discusses the advantages and limitations of hydraulic systems and the situations in which they are best used.

How to Use This Module

The basic concept and theory curriculum consists of a series of self-study modules. As the term self-study implies, you work through the materials on your own at a comfortable pace. Plan sufficient time (approximately 30 minutes) to complete at least one section of a module in a working session. This module combines a variety of features to make the learning process convenient and productive:

- Learning objectives
- Text
- Charts, illustrations
- Progress checks
- Additional resources
Learning Objectives
Each section of material offers a set of learning objectives. Read the objectives and use them to guide you to the most important concepts. After you finish each section and before you complete the progress check, reread the objectives to confirm that you understand the key concepts.

Text
Definitions, examples, and explanations comprise the learning module text. Read it carefully and return for review if necessary.

Charts, illustrations
An important element of any instruction is visualizing the concepts. This module contains graphics and illustrations to enhance the text material and aid your learning. Where appropriate, the module also contains charts that help you organize or summarize information.

Progress Checks
Progress checks are self-tests that provide reinforcement and confirm your understanding of important topics. After completing each section of the module, return to review the objectives, and then work through each of the progress check items. Upon completion, check your answers against those provided. If you answered any incorrectly, return to the text and reread the pertinent information.

Additional Resources
This module may refer you to other documents or sources that expand on the concepts covered in the module. The reference will include the name of the source and how you can obtain it.

Form #321-042
Pump Ratio and Performance Charts
Hydraulic Systems

Learning Objectives

Before you can effectively discuss hydraulic fluid handling systems with your customers, you need to know precisely what they are and how they work. This section defines a hydraulic fluid handling system, identifies individual power supply components and their functions, and describes hydraulic system operation. It also explains the purpose for pressure and flow control and discusses power supply sizing. Upon completion of the section, you should be able to:

- Define what is meant by a hydraulic fluid handling system.
- Identify and explain the functions of the hydraulic power supply components.
- Understand the operation of a typical hydraulic system.
- Understand the purpose for pressure and flow control in a hydraulic system.
- Understand the general process for determining the required size for a hydraulic power supply.

Component Identification and Function

A typical hydraulic fluid handling system, shown in Figure 1, is one in which the power supply, or power pack, provides hydraulic fluid at a given pressure and flow to operate differential hydraulic motors. These motors, in turn, drive fluid displacement pumps that deliver fluid at a given pressure and flow for a specific application.

This module will discuss in detail only these parts of the hydraulic system - the hydraulic power supply and differential hydraulic motors. Fluid displacement pumps and application equipment are covered in other training modules.

Figure 1 Hydraulic Fluid Handling System.
Figure 2 shows the basic components of a hydraulic power supply. Their functions are:

The reservoir stores and cools hydraulic oil and provides the mounting surface for other power supply components. It contains:

- **Clean-out doors and a fluid drain port** that are used for cleaning and maintenance.
- **A filler breather port/cap** that is used to fill the reservoir with oil. The reservoir must breathe to atmosphere for proper operation.
- **A low level/high temperature sensor** that detects a low hydraulic oil level in the reservoir or a high oil temperature condition.
- **A hydraulic oil level/temperature indicator** that provides a visual check for oil level and temperature during operation.

The hydraulic pump provides hydraulic oil to all hydraulic motors in the system. It contains a manually adjustable pressure compensator that is used to adjust the hydraulic oil pressure to the header, or piping, system.

The motor drives the hydraulic pump. For industrial in-plant applications, it is usually electric. For mobile applications, the engine power take-off, or PTO, may drive the hydraulic pump.

The oil supply line supplies hydraulic oil under pressure from the power supply to the hydraulic motor.

The oil return line returns hydraulic oil, usually at low pressure, from the hydraulic motor back to the power supply’s reservoir.

The return oil filter, located on the return line between the last hydraulic-powered device and the reservoir, removes contaminants from the hydraulic oil.
Figure 2 Components of a hydraulic power supply.
How Hydraulic Systems Work

A typical hydraulic system operates as shown in Figure 3:

1. The motor, usually electric, drives a hydraulic pump.

2. The hydraulic pump draws oil from the reservoir and pumps it to the hydraulic motor via the oil supply line.

3. Hydraulic oil enters and exits the hydraulic motor, causing it to reciprocate.

4. The reciprocation of the hydraulic motor drives the fluid section or displacement pump.

5. The displacement pump delivers the fluid in conjunction with the application equipment.

6. The hydraulic oil that leaves the hydraulic motor returns to the reservoir via the oil return line.

A hydraulic system is a closed loop power supply system. It uses hydraulic oil to power devices. The oil is not exhausted out of the system after the devices are powered, but is routed back to the power supply reservoir and reused in a continuous loop.

Figure 3 Hydraulic system operation.
Pressure and Flow Control

In a **hydraulic fluid handling system**, hydraulic fluid controls are used to regulate the hydraulic oil pressure and flow to each hydraulic motor to keep the system balanced and functioning more productively. These controls include the hydraulic pressure reducing valve and the flow control valve:

The **hydraulic pressure reducing valve** is used to adjust the hydraulic system oil pressure to the operating pressure required by the fluid pump for the specific application. A **pressure gauge** is provided to verify the pressure setting.

The **flow control valve** limits the maximum amount of hydraulic oil flow to the hydraulic motor, ensuring that it operates at the recommended cycle rate. This prevents pump runaway when a supply container empties or a fluid line ruptures.

![Figure 4 Hydraulic fluid controls.](image-url)
Power Supply Sizing

When selling hydraulics, you’ll need to know how to determine the correct size for a proposed hydraulic system’s power supply. To do so, follow these basic steps:

1. Figure out the required fluid pressure and flow at each point of application.

2. Select the pump package with the correct motor-to-pump ratio. Hydraulic-driven pumps require higher input pressures to the motor than air-driven pumps. Since the hydraulic input pressure is greater, pump ratios are smaller. Refer to the *Pump Ratio and Performance Charts* module for more information on pump and motor selection.

3. Determine the hydraulic oil consumption rate for all the hydraulic motors in the system at the required cycle rate. Check the pump performance charts for the selected pump for this information. See Figure 5 for an example of a pump’s performance charts.

4. Refer to the technical data sheets for the hydraulic motor to determine the maximum working pressure.

5. Provide the oil consumption rate and maximum working pressure information for the hydraulic motor to the power supply supplier to ensure that the power supply to be built for the proposed hydraulic system will have the horsepower required to perform the desired application and handle future expansion.

Note: Hydraulic fluid is exhausted from differential hydraulic motors only on the upstroke of the operating cycle so the oil return line must have at least twice the flow capacity as the oil supply line. Otherwise, back pressure on the hydraulic motor piston will slow down the motor and the fluid displacement pump, resulting in a loss of pump performance.

Figure 5 Pump performance charts.
Progress Check

Directions: After answering the following questions, compare your answers with those provided in the answer key following the progress check. If you respond to any items incorrectly, return to the text and review the appropriate topics.

1. Fill in the blanks below to make these statements about a hydraulic fluid handling system true.
 a. The power supply provides _________________________ at a given pressure and flow to operate _________________________.
 b. Fluid is delivered at a given pressure and flow for a specific application by ________________________ driven by the _________________________.

2. Write the name of the correct hydraulic power supply component in the blank following each number. Choose from the list below.
 Hydraulic pump Oil return line Return oil filter
 Motor Oil supply line Reservoir

Figure 2 Components of a hydraulic power supply.
3. In each blank, write the name of the hydraulic power supply component that matches the described function. Choose from the list in the previous question.

a. ________________________ Removes contaminants from the hydraulic oil
b. ________________________ Drives the hydraulic pump
c. _________________________ Stores and cools the hydraulic oil
d. ________________________ Carries pressurized hydraulic oil to powered device
e. ________________________ Provides pressurized hydraulic oil to all pumps in the system
f. ________________________ Carries hydraulic oil back to reservoir from powered device

4. Number the hydraulic system operational steps below in the correct order from 1 to 5.

_____ Displacement pump and application equipment deliver fluid
_____ Hydraulic pump draws oil from reservoir and pumps it to hydraulic motor via oil supply line; oil returns to reservoir via oil return line
_____ Hydraulic motor reciprocates
_____ Hydraulic motor reciprocation drives displacement pump
_____ Motor drives hydraulic pump

5. Which of the following statements are true about hydraulic fluid controls?

You may select one or more answers.

a. They regulate the hydraulic oil pressure and flow to each hydraulic motor.
b. They include the hydraulic pressure reducing valve and the flow control valve.
c. They prevent pump runaway if a container is emptied, or if a fluid line ruptures.
d. They regulate the fluid flow and pressure from each pump.
6. This chart shows the steps for determining the correct size for a hydraulic system power supply. Fill in the missing words to complete each step.

1. Figure out the required fluid ____________ and __________ at each point of application.

2. Select the __________________ with the correct motor-to-pump ratio.

3. Determine the __________________________ for all the hydraulic motors in the system at the required cycle rate.

4. Determine the __________________________ for the hydraulic motor.

5. Provide the __________________________ and ____________________ information for the __________________ to the power supply supplier to ensure that the power supply to be built or acquired for the proposed hydraulic system will have the __________________ required to perform the desired application and handle future expansion.
Answers to Progress Check

1. The correct answers are:
 a. Hydraulic fluid or oil; differential hydraulic motors
 b. Fluid displacement pumps in conjunction with application equipment; differential hydraulic motors

2. The correct answers are:
 [1] Return oil filter
 [2] Oil return line
 [4] Reservoir
 [5] Oil supply line
 [6] Hydraulic pump

3. The correct answers are:
 a. The return oil filter removes contaminants from the hydraulic oil.
 b. The motor drives the hydraulic pump.
 c. The reservoir stores and cools the hydraulic oil.
 d. An oil supply line carries pressurized hydraulic oil to a powered device.
 e. The hydraulic pump provides pressurized hydraulic oil to all hydraulic motors in the system.
 f. An oil return line carries hydraulic oil back to the reservoir from a powered device.
4. The correct answers are:

5. Displacement pump and application equipment deliver fluid

2. Hydraulic pump draws oil from reservoir and pumps it to hydraulic motor via oil supply line; oil
returns to reservoir via oil return line

3. Hydraulic motor reciprocates

4. Hydraulic motor reciprocation drives displacement pump

1. Motor drives hydraulic pump

5. The correct answers are:

a. They regulate the hydraulic oil pressure and flow to each hydraulic motor.

b. They include the hydraulic pressure reducing valve and the flow control valve.

c. They prevent pump runaway if a container is emptied, or if a fluid line ruptures.

(Answer d, is incorrect. While it is true that the pressure reducing valve and the flow control
valve indirectly control pump output pressure, they do so by regulating hydraulic pressure and
flow into the hydraulic motor.)

6. The correct answers are:

1. Figure out the required fluid pressure and flow at each point of application.

2. Select the pump package with the correct motor-to-pump ratio.

3. Determine the hydraulic oil consumption rate for all the hydraulic motors in the system at the
required cycle rate.

4. Determine the maximum working pressure for the hydraulic motor.

5. Provide the hydraulic oil consumption rate and maximum working pressure information for the
hydraulic motor to the power supply supplier to ensure that the power supply to be built or
acquired for the proposed hydraulic system will have the horsepower required to perform the
desired application and handle future expansion.
Hydraulic Motors

Learning Objectives

To effectively sell and provide service support for differential hydraulic motors, you must be thoroughly familiar with what they are and how they work. This section defines differential hydraulic motors, lists trade names, and describes individual motor components and their functions. It also discusses how various motor components function during upstroke, downstroke, and changeover. Upon completion of the section, you should be able to:

- Define what is meant by a differential hydraulic motor.
- Identify and explain the functions of the basic components of a differential hydraulic motor.
- Understand what occurs in the differential hydraulic motor during upstroke, downstroke, and changeover.
Component Identification and Function

Differential hydraulic motors are devices that are powered by pressurized hydraulic oil provided by a hydraulic power supply. The flow of the pressurized oil through the motor, shown in Figure 6, causes it to reciprocate. The reciprocation of the motor drives the fluid section or pump.
Figure 6 Differential hydraulic motor.

The trade names for Graco’s hydraulic motors are Viscount I, I+, and II, Dyna-Star, and Power-Star. Viscount I, I+, and II are divorced-design industrial motors. Dyna-Star and Power-Star are in-line...
Differential hydraulic motors contain the basic components shown in Figures 7.
Figure 7 Assemblies of a hydraulic motor.

Figure 8 Other components of a hydraulic motor.

These components function as follows:

The **trip rod assembly** consists of the *trip rod, trip rod spring,* and *spring retainers.* It controls the position of the reciprocator valve assembly by providing the tension needed to actuate the detent assembly at the appropriate times. It also acts as a shock absorber to minimize wear on contact surfaces.

The **reciprocator valve assembly** contains a *control valve* that provides directional flow for hydraulic oil through the motor. It does this by opening and closing appropriate oil ports, controlling the oil flow to and from the top side of the motor piston. The reciprocator valve assembly moves very rapidly during changeover at the end of each piston stroke to ensure that the motor changes direction quickly.

The **detent assembly** provides the pressure that keeps the reciprocator valve assembly properly positioned during the upstroke and downstroke phases of motor operation. During changeover at the end of each piston stroke, it moves very rapidly to ensure that the motor changes direction quickly. The detent assembly consists of detent springs and steel detent balls. The *detent spring* provides the spring tension needed to make the *detent balls* hold the control valve of the reciprocator valve assembly in the proper position.

The **upper oil manifold,** which is part of the upper cylinder cap assembly, contains the main oil inlet which delivers high pressure oil from the power supply to the motor. It also contains the *upper oil inlet port* to the top side of the motor piston and the *oil return port* to the hydraulic system reservoir.

The **lower oil manifold,** which is part of the bottom cylinder cap, contains the *lower oil inlet port* to the bottom side of the motor piston.

The **valve stop** limits the downward travel of the reciprocator valve assembly. It contains the detent assembly.

The **motor piston** provides the surface area for the hydraulic oil to exert pressure against, thus transforming the oil pressure into mechanical force.

The **piston seals** seal the motor piston tightly to the motor cylinder, preventing oil leaks between the top and bottom sides of the piston.

The **motor cylinder** provides the surface against which the motor piston seals.
The displacement rod is a hollow cylinder that surrounds the trip rod assembly. It is connected to the motor piston and to the fluid piston rod of the pump. The mechanical force from the motor piston is transferred to the pump via this rod.

Tie rods hold the motor assembly together.

Progress Check

Directions: After answering the following questions, compare your answers with those proved in the answer key following this progress check. If you respond to any items incorrectly, return to the text and review the appropriate topics.

1. **Fill in the blanks below to make these statements about hydraulic motors true.**

 a. The flow of ______________________________ through the hydraulic motor causes it to ______________________________.

 b. The ______________________________ of the hydraulic motor drives the ______________________________.

2. **Write the name of the correct hydraulic motor component in the blank following each number. Choose from the list below.**

 Control valve Motor cylinder Trip rod

 1. __________________
 2. __________________
 3. __________________
 4. __________________
 5. __________________
 6. __________________
 7. __________________
 8. __________________
 9. __________________
 10. _________________
 11. _________________
Figure 8 Other components of a hydraulic motor.

3. In each blank, write the name of the hydraulic motor component that matches the described function. Choose from the list below.

Detent assembly Motor piston Tie rods
Displacement rod Piston seals Trip rod assembly
Lower oil manifold Reciprocator Upper oil manifold
Motor cylinder Valve assembly Valve stop

a. ________________________ Controls the flow of oil to and from the top side of the motor
b. ________________________ Provides the surface area for oil to exert pressure against
c. ________________________ Contains the lower oil inlet port
d. ________________________ Actuates the detent assembly at the appropriate times
e. ________________________ Prevents oil leaks between the top and bottom sides of the piston
f. ________________________ Keeps the reciprocator valve assembly properly positioned during the upstroke and downstroke phases
g. ________________________ Provides the surface against which the motor piston seals
h. ________________________ Transfers mechanical force from the motor piston to the pump
i. ________________________ Contains the upper oil inlet port and the oil return port
j. ________________________ Contains the detent assembly
k. ________________________ Hold the motor assembly together

Answers to Progress Check

1. The correct answers are:
 a. Pressurized hydraulic oil, reciprocate
 b. Reciprocation, fluid section or pump

2. The correct answers are:
 [1] Tie rods
 [2] Upper oil manifold
 [3] Control valve
 [4] Valve stop
 [5] Trip rod
 [6] Detent spring
 [8] Piston seals
 [10] Displacement rod
 [11] Lower oil manifold

3. The correct answers are:
 a. The **reciprocator valve assembly** controls the flow of oil to and from the top side of the motor.
 b. The **motor piston** provides the surface area for oil to exert pressure against.
 c. The **lower oil manifold** contains the lower oil inlet port
 d. The **trip rod assembly** actuates the detent assembly at the appropriate times.
 e. The **piston seal** prevents oil leaks between the top and bottom sides of the piston.
 f. The **detent assembly** keeps the reciprocator valve assembly properly positioned during the upstroke and downstroke phases.
g. The motor cylinder provides the surface against which the motor piston seals.
h. The displacement rod transfers mechanical force from the motor piston to the pump.
i. The upper oil manifold contains the upper oil inlet port and the oil return port.
j. The valve stop contains the detent assembly.
k. Tie rods hold the motor assembly together.

How Differential Hydraulic Motors Work

To aid in your understanding, discussion of the hydraulic motor’s operating cycle is divided into: upstroke, top changeover, downstroke, and bottom changeover.

During upstroke, the motor components work as shown in Figure 9:
1. The oil inlet port in the upper oil manifold to the top side of the motor piston is closed.
2. The oil return port in the upper oil manifold to the reservoir is open.
3. The oil inlet port in the lower oil manifold to the bottom side of the motor piston is open.

Pressurized hydraulic oil enters the motor through this lower oil inlet port.
4. The pressurized hydraulic oil pushes the motor piston up.

5. The oil above the motor piston is pushed out of the motor and back to the reservoir through the oil return port. During upstroke, twice as much oil exits from the motor through the oil return port as enters the motor through the lower oil inlet port.

6. The displacement rod moves upward with the motor piston, pulling up the displacement rod of the pump.

Figure 9 Upstroke.

During top changeover, the motor components work as shown in Figure 10:

1. The bottom of the inner part of the displacement rod contacts the trip rod spring.
2. The motor piston continues to travel upward, compressing the trip rod spring until the force on the trip rod spring exceeds the force on the detent spring.

3. When the detent spring force is exceeded, the reciprocator valve assembly quickly moves upward.

4. The upper oil inlet port to the top side of the motor piston opens.

5. The oil return port in the upper oil manifold to the reservoir closes. No hydraulic oil can exit the motor.

6. The lower oil inlet port to the bottom side of the motor piston remains open.

Figure 10 Top changeover.

During downstroke, the motor components work as shown in Figure 11:

1. Hydraulic oil enters the motor through both the upper and lower oil inlet ports, pressurizing both sides of the motor piston.
2. Because the surface area on the top side of the motor piston is twice as great as the surface area on the bottom, the force above the piston is twice as great as the force underneath it. Therefore, the motor piston moves downward.

3. Since the oil return port to the reservoir is closed, all the oil below the motor piston is forced out through the lower oil inlet port and up to the top side of the motor piston.

4. The displacement rod moves downward with the motor piston, pushing the displacement rod of the pump down.

Figure 11 Downstroke.

During bottom changeover, the motor components work as shown in Figure 12:

1. The motor piston contacts the trip rod spring.
2. The motor piston continues to travel downward, compressing the trip rod spring until the force on the trip rod spring exceeds the force on the detent spring.

3. When the detent spring force is exceeded, the reciprocator valve assembly quickly moves
downward.
4. The upper oil inlet port to the top side of the motor piston closes.
5. The oil return port in the upper oil manifold to the reservoir opens.
6. The lower oil inlet port to the bottom side of the motor piston remains open. Pressurized hydraulic oil enters the motor here.
7. Hydraulic oil will now exit the motor at twice the rate that it enters. Since pressurized hydraulic oil is entering only through the lower oil inlet port to the bottom side of the motor piston, it will push the piston upward.

Figure 12 Bottom changeover.

Progress Check

Directions: After answering the following questions, compare your answers with those proved in the answer key following this progress check. If you respond to any items incorrectly, return to the text and review the appropriate topics.

Fill in the blanks to answer the following questions about the upstroke, downstroke, and changeover phases of the differential hydraulic motor's operating cycle. Refer to the graphics for help.
1. During upstroke:
 a. The upper oil inlet port is ____________________________.
 b. The lower oil inlet port is ____________________________.
 c. The oil return port is ________________________________.
 d. The _______________________ moves up, forcing the oil above to exit via the
 __.
 e. The ____________________________ moves up, pulling the ___________________________
of the pump up.

2. During top changeover:
 a. The displacement rod contacts the ____________________________.
 b. The upward movement of the ____________________________ compresses the
 __ until detent spring force is exceeded.
 c. The _____________________________________ then moves quickly upward, opening the
 ________________ and closing the ________________.

3. During downstroke:
 a. The ______________________________ moves downward, forcing the oil below to exit via the
 ________________ and re-enter via the ________________________________.
b. The ________________________________ moves down, pushing the ________________________________ of the pump down.

4. During bottom changeover:
 a. The _________________________ contacts the trip rod spring.
 b. The downward movement of the _____________________________ compresses the ________________________________ until detent spring force is exceeded.
 c. The _____________________________________ then moves quickly downward, closing the _______________________ and opening the _____________________.

Answers to Progress Check

1. The correct answers are:

 During upstroke:

 a. The upper oil inlet port is closed.
 b. The lower oil inlet port is open.
 c. The oil return port is open.
 d. The motor piston moves up, forcing the oil above to exit via the oil return port.
 e. The motor displacement rod moves up, pulling the fluid displacement rod of the pump up.

2. The correct answers are:

 During top changeover:

 a. The displacement rod contacts the trip rod spring.
 b. The upward movement of the motor piston compresses the trip rod spring until detent spring force is exceeded.
 c. The reciprocator valve assembly then moves quickly upward, opening the upper oil inlet port and closing the oil return port.

3. The correct answers are:

 During downstroke:

 a. The motor piston moves downward, forcing the oil below to exit via the lower oil inlet port and re-enter via the upper oil inlet port.
b. The motor displacement rod moves down, pushing the fluid displacement rod of the pump down.

4. The correct answers are:

 During bottom changeover:
 a. The motor piston contacts the trip rod spring.
 b. The downward movement of the motor piston compresses the trip rod spring until detent spring force is exceeded.
 c. The reciprocator valve assembly then moves quickly downward, closing the upper oil inlet port and opening the oil return port.

Hydraulic Systems: Advantages, Limitations, and Uses

Learning Objectives

An understanding of the comparative characteristics of hydraulic fluid handling systems will help you to recognize appropriate marketing opportunities and communicate their benefits to customers. This section discusses the advantages and limitations of hydraulic fluid handling systems, describes when hydraulic fluid handling systems are preferred over air systems, and identifies the types of pumps that hydraulic systems handle. Upon completion of the section, you should be able to:

- Describe advantages and limitations of hydraulic fluid handling systems.
- Identify market situations in which hydraulic fluid handling systems are preferred over air systems.
- Identify the types of pumps that are compatible with hydraulic motors.

Advantages and Limitations

The main advantages of a hydraulic fluid handling system are:

- Efficiency.
- Reliable and effective operation.
- A relatively low investment cost for the power supply.
- A relatively small physical space requirement.

Hydraulic power supplies are theoretically about five times more efficient than air compressors. A great deal of energy is required to compress air before it can perform work. Hydraulic oil is nearly incompressible, so energy is not consumed compressing it before it performs work. The efficiency advantage of a hydraulic system is greater in continuous duty applications than in intermittent applications. However, in intermittent applications, although the power supply continues to operate in bypass mode, it does so with much lower energy consumption than in continuous duty applications. Figure 13 shows an example of a hydraulic system's efficiency advantage.
Air-Powered

Performance: 3 gpm at 800 psi
Pump: 10:1 President
Input energy: 32 scfm at 80 psi
Compressor: 5 hp electric
Rule of thumb:
\[hp = \frac{scfm}{4} \]

Hydraulic-Powered

Performance: 3 gpm at 800
Pump: 1:1 Dyna-Star
Input energy: 3 gpm hydraulic oil at 800 psi
Hydraulic power supply: 1.7 hp electric
Rule of thumb:
\[hp = \frac{psi \times gpm}{1714} \times 0.85 \]

Figure 13 Air and hydraulics performance comparison chart.

In addition to being more efficient, hydraulic systems provide greater reliability than air systems. Components last longer because they operate in oil. Also, because they operate in a closed loop, hydraulic systems have fewer moving parts and less contamination than air systems which develop rust, scale, and fluid contaminants due to condensed moisture in the compressed air supply.

Hydraulic systems do not have icing problems as air systems do. Therefore, they are the preferred choice for cold weather operations.

Hydraulic systems operate more effectively than air systems in these ways:

- Pumps driven by hydraulic motors can maintain a higher fluid pressure and flow than equivalent air-driven pumps. This can affect production rate for certain types of applications.

- Hydraulic motors change over more quickly than air motors so there is less pulsation in pumped fluids.

- Hydraulic systems do not exhaust to the atmosphere. They are quieter than air systems and emit no air-borne contamination.

The initial investment cost for a hydraulic power source can be significantly less than that for a comparable air power source. Since hydraulic systems are about five times more efficient than air systems, a 5 hp hydraulic power supply unit will perform at the same output as a 25 hp air compressor.

Hydraulic power supplies are smaller than air compressors and pressure tanks with equivalent output performance, so hydraulic systems usually require less physical space than air systems. Therefore, they may be preferred for truck-mounted or gas engine-powered operations. The limitations of a hydraulic system include:

- Expense.
• System design constraints.
• Potential for contamination.

Hydraulic motors cost more than air motors and they require twice as much plumbing. Air motors need only supply lines, while hydraulic motors need both supply and return lines.

For proper system operation, hydraulic oil must be kept cool, usually below 140 degrees Fahrenheit. The capacity of the power supply reservoir must be large enough to keep hydraulic oil at or below recommended operating temperatures. Otherwise, additional oil cooling equipment, usually a case drain cooler on the return line side of the system, must be used.

Also, return line size must be relatively large to prevent downstream pressure spikes and to ensure that oil goes through the return oil filter rather than the filter bypass valve.

Advantages

Efficiency
Are theoretically about five times more efficient than air systems
Efficiency advantage is greatest in continuous duty applications

Reliable and effective operation
Components last longer than air system components
Have fewer moving parts and less contamination than air systems
Do not have problems with icing
Can maintain higher fluid pressure and flow than equivalent air systems
Cause less pulsation than air systems
Are quieter than air systems
Do not emit air-borne contamination

Relatively low investment cost for power supply
Relatively small physical space requirement

Limitations

Expense
Hydraulic motors cost more than air motors
Hydraulic motors require twice as much plumbing as air motors

System design constraints
Power supply reservoir must be large enough to keep hydraulic oil at or below recommended operating temperature
Return line size must be relatively large

Potential for contamination from outside or inside system

In addition to being kept cool, hydraulic oil must be kept clean for proper system operation. Although hydraulic systems are closed loop systems, they are not entirely free from contamination. Contaminants
come from outside the hydraulic system and from within:

- Contaminants from outside the system include lint, dirt, and moisture. These contaminants may cling to system components or enter the reservoir if the filter cap is not cleaned at proper intervals.
- Contaminants from inside the system include particles formed due to wear of metal and seals and packings components and sludge and acids formed when extreme heat and pressure cause chemical reactions in the hydraulic fluid.

Figure 14 summarizes the main advantages and limitations of hydraulic fluid handling systems.

<table>
<thead>
<tr>
<th>Hydraulic Fluid Handling Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 14 Advantages and limitations of hydraulic fluid handling systems.</td>
</tr>
</tbody>
</table>

Typical Applications

As you’ve no doubt gathered from the information provided in *Advantages and Limitations*, hydraulic
systems are preferred when energy efficiency, motor reliability, air motor icing, or insufficient air compressor capacity are concerns. In short, the most likely market opportunities for selling hydraulics include situations in which:

- The customer has continuous duty applications.
- The customer will use the system in an environment where the temperature is below freezing.
- The customer does not have an air compressor or has:
 - High volume delivery demands that occur on an intermittent basis.

The specific types of applications that a hydraulic system can handle are a function of the type of pump used to deliver the fluid. Differential hydraulic motors drive the same types of pumps that air motors do: two-check, four-check, and priming piston pumps.

Progress Check

Directions: After answering the following questions, compare your answers with those proved in the answer key following this progress check. If you respond to any items incorrectly, return to the text and review the appropriate topics.

1. *The chart below shows the main advantages and limitations of hydraulic fluid handling systems. Fill in the blanks to list an example of each designated advantage and limitation.*

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficency</td>
<td>Expense</td>
</tr>
<tr>
<td>Reliable and effective operation</td>
<td>System design constraints</td>
</tr>
<tr>
<td>A relatively low investment cost for the power supply</td>
<td></td>
</tr>
<tr>
<td>A relatively small physical space requirement</td>
<td>Potential for contamination</td>
</tr>
</tbody>
</table>

- An air compressor without the capacity to handle delivery demands.

The specific types of applications that a hydraulic system can handle are a function of the type of pump used to deliver the fluid. Differential hydraulic motors drive the same types of pumps that air motors do: two-check, four-check, and priming piston pumps.

2. Which situations represent the most likely market opportunities for selling hydraulics?

 You may select one or more answers.
a. The customer has an oversized air compressor.
b. The customer has high volume intermittent duty applications.

c. The customer has low to moderate volume intermittent duty applications.
d. The customer has an application that requires a very large motor.
e. The customer will operate the system in cold weather.
f. The customer has continuous duty applications.

3. Which types of fluid pumps can be driven by differential hydraulic motors?
 a. ___
b. ___
c. ___

Answers to Progress Check

1. Any answer in each set is correct:
The purpose of this Module Evaluation is to help the Graco Technical Communications department determine the usefulness and effectiveness of the module.

Instructions: Please complete the evaluation, tear it on the perforation, and return to:
Graco Technical Communications Department, P.O. Box 1441, Minneapolis, MN 55440-1441, USA.

1. Based on the objectives, this module:
 a. Two-check piston pumps [] Significantly exceeded my expectations
 b. Four-check piston pumps [] Exceeded my expectations
 c. Priming piston pumps [] Met my expectations
 [] Was below my expectations
 [] Was significantly below my expectations

2. Why did you select the above rating?

3. How do you plan to use the module information in your job?

4. How do you think the module could be improved?

I verify that I have successfully completed Module No. 321-046, Hydraulic Power Supply & Motors

Signature ____________________________

Date _______________________________
This module was developed by the Graco Technical Communications Department with assistance from the following individuals:

Al Brus
Dirk Johnson
Tom Ruff

The Graco Concept and Theory Training program consists of the following topics:

Fluid Basics
Atomization
Electrostatic Spray Finishing
Safety
Airspray Technology
Fluid Types: Paints and Other Coatings
Fluid Types: Lubricants
Fluid Types: Sealants and Adhesives
Airless Atomization
Spraying Techniques
Transfer Efficiency
Fluid Movement
Fluid Controls
Pumps
Motors and Power Sources
Plural Component Paint Handling
Plural Component Sealant and Adhesive Handling
Paint Circulating Systems
Automatic Finishing
Lube Reels and Dispense Valves
Lube Metering Systems
Electronic Fluid Management Systems